Записаться на расчёт

Борисов Е.К. Экспериментальная динамика сооружений. Мониторинг транспортной вибрации 2007г

Экспериментальная динамика сооружений. Мониторинг транспортной вибрации

Развитие современных городов не представляется возможным без соответствующего развития транспортных коммуникаций: автомобильных, трамвайных, железнодорожных, систем метрополитенов различной глубины заложения и других, призванных обеспечивать перевозки всех типов. Мощность и сочетание типов транспорта в значительной степени определяются географией и рельефом городов, численностью населения, историей их развития, экономико-социальными тенденциями развития региона и страны.

С физической точки зрения инженерное сооружение является потребителем колебательной энергии, которая подводится к нему в зависимости от природы ее генерации, физико-механических характеристик трасс распространения и характера контакта сооружения с энергонесущей средой.

Любой вид транспорта является источником колебаний, передающихся через грунтовую среду на расположенные вблизи транспортных магистралей сооружения и вызывающих их вибрацию (транспортную вибрацию), которая сказывается как на техническом состоянии зданий, так и на санитарно-гигиенических условиях пребывания в них людей. По характеру передачи колебательной энергии на сооружение транспортная вибрация является кинематическим возмущением исследуемого сооружения (охраняемого). Рост всех видов грузопотоков, увеличение скорости и интенсивности движения транспорта обусловливают необходимость получения качественных и количественных оценок влияния транспортной вибрации на сохранность зданий. Как в отечественной, так и в зарубежной литературе периодически появляются сообщения об отрицательных последствиях транспортной вибрации, однако она, как правило, не учитывается ни при новом строительстве, ни при реконструкциях существующих зданий и сооружений.

То, что транспортная вибрация не приводит в настоящий момент к чрезвычайным ситуациям, в определенной степени объясняет и практическое отсутствие нормативов, регламентирующих ее интенсивность в численных оценках по критериям прочности и надежности охраняемых объектов.

Учитывая общее физическое старение существующих зданий, особенно памятников архитектуры, которые не будут сноситься при модернизации исторически сложившихся центров, вопросы обеспечения надежности сооружений, связанные с транспортной вибрацией, могут в ближайшее время стать вполне актуальными. Особенно убыстряется этот процесс в тех случаях, когда проводимые работы нарушают сложившийся гидрологический режим.

Выдвижение на передний фронт прикладной науки проблем динамики сооружений в значительной степени обусловлено быстрым ростом их энергонасыщенности, внедрением новых конструкционных материалов и нестандартных пространственных решений. Прямое применение традиционных теоретических методов решения задач динамики затрудняется необходимостью иметь численные оценки коэффициентов, которые используются в системах уравнений. Это приводит к тому, что во многих случаях методы классической строительной механики не дают устойчивых решений, пригодных для практического применения.

В подобной ситуации несколько меняется система взаимоотношений между теоретическими и экспериментальными исследованиями: последние начинают проявлять все больший интерес к методам статистической физики. Эта тенденция не является чем-то новым. Еще в 60-х гг. В.В. Болотин и В.В. Екимов - пионеры применения статистических методов в строительной механике - обращали внимание на начало интенсивного развития принципиально нового направления - статистической динамики. До недавнего времени это развитие сдерживалось большими вычислительными трудностями при использовании методов регрессионного и спектрального анализа для обработки и интерпретации экспериментально полученных числовых массивов. С внедрением систем компьютерной математики (СКМ) эта трудность оказалась успешно преодоленной. Исследователи-экспериментаторы получили возможность глубоко и всесторонне анализировать материал полевых наблюдений и выявлять вероятностные взаимосвязи между определяющими параметрами динамических процессов, протекающих даже в сложных статистически слабосвязанных системах. Особенно эффективным оказывается применение спектрального анализа. В результате этого экспериментальные исследования становятся самодостаточными и начинают быть тем, что присуще им по природе - источником достоверной информации для разработки новых теорий, базирующихся на исследовании поведения реальных физических систем, как это было в прошлом со времен Роберта Гука. Транспортная вибрация в ее техническом приложении - одно из перспективных и жизненно важных для жизнеобеспечения населенных пунктов направлений статистической экспериментальной динамики сооружений.

Владивосток - единственный выход России на тихоокеанский театр действий - является уникальным городом: морской порт, расположенный практически в центре, окружен многочисленными рокадными железными дорогами. По городу проходит несколько магистральных железнодорожных путей, имеется разветвленная система трамвайных маршрутов и автомобильных трасс. Для транспортного движения Владивостока характерны высокая интенсивность, традиционная узость улиц и сложный рельеф. Транспортные магистрали, которые можно рассматривать как источники энергетических вибрационных потоков, окружены зданиями постройки начала прошлого века, многие из которых являются памятниками архитектуры с неизвестным на данный момент техническим состоянием. Кроме того, имеются многочисленные мосты, надземные пешеходные переходы, автомобильные развязки и расположенные вблизи транспортных магистралей подпорные стенки высотой 10–15 м.

Все это создает предпосылки для того, чтобы рассматривать транспортную вибрацию как источник возможных чрезвычайных ситуаций, который усугубляется тем, что по карте С (1% риска) ОСР–97 СНиП П–7–81* территория города относится к категории сейсмически активных. Многие участки в результате гористого рельефа, нарушения гидрологического режима, наличия естественно-слабых, мощных насыпных и техногенно измененных грунтов, в ряде случаев водонасыщенных, имеют фактическую сейсмическую интенсивность выше фоновой.

Рассматриваемая проблема имеет следующие основные задачи:

  • измерение динамики грунта и вибрации охраняемых сооружений от различного типа трафиков и их сочетаний, получение регрессионных соотношений между характеристиками;
  • получение оценок уровня риска превышения динамикой грунта и исследованных охраняемых сооружений нормативно-допустимых значений;
  • разработка методики прогнозирования и переноса результатов экспериментальных измерений на сооружения-аналоги.

Созданные к настоящему времени вероятностные расчетные и математические модели грунтов и охраняемых объектов предназначены в основном для анализа их напряженно- деформированного состояния или в статической постановке, или для ограниченных объемов и не приспособлены для оценки преобразования колебательной энергии при переходе ее от грунта к охраняемому сооружению. Поэтому наиболее рациональным является вероятностная оценка поведения охраняемых сооружений, подверженных динамическим воздействиям, с учетом преобразования импульса при переходе его от грунта к фундаменту.

Однако теоретические методы для решения этой проблемы не могут быть использованы непосредственно, поскольку это требует численного задания ряда коэффициентов, описывающих физико-механические свойства зоны контакта охраняемого сооружения с энергонесущей средой. Попытки их определения на масштабных моделях встречают большие трудности в связи с необходимостью выбора и выполнения критериев подобия, а на натурных объектах при взрывных воздействиях от промышленных взрывов - в связи с отсутствием возможности варьировать параметры в необходимом диапазоне. Единственным реальным путем получения необходимой и достоверной информации является выполнение специальных экспериментальных исследований с применением современных методов их обработки и анализа.

В связи с изложенным решение задачи по оценке безопасности охраняемых сооружений, расположенных вблизи транспортных потоков, представляется как научная задача, имеющая важное народно-хозяйственное значение.

Скачать Борисов Е.К. "Экспериментальная динамика сооружений. Мониторинг транспортной вибрации 2007г"

Другие документы
Вершинина О.С. Практическое пособие строительного эксперта 2007г
DJVU, 12,2 МБ
Деев Г.Ф. Пацкевич И.Р. Дефекты сварных швов 1984г
DJVU, 2,6 МБ
Прядко Н.В. Обследование и реконструкция жилых зданий 2006г
DJVU, 2,5 МБ
Гроздов В.Т. Признаки аварийного состояния несущих конструкций зданий и сооружений 2000г
DJVU, 332,9 КБ
Гликин С.М. Пособие по практическому выявлению пригодности к восстановлению поврежденных конструкций зданий и сооружений, и способам их оперативного усиления ЦНИИПРОМЗДАНИЙ 1996г
PDF, 3,3 МБ
Комков В.А. Техническая эксплуатация зданий и сооружений 2007г
DJVU, 3,4 МБ
Мешечек В.В. Пособие по оценке физического износа жилых и общественных зданий
DOC, 11,3 МБ
Инструкция по определению состояния стальных закладных деталей в конструкциях крупнопанельных зданий и рекомендации по их антикоррозионной защите и усилению (ЛНИИ АКХ им. К.Д. Памфилова, 1977г)
PDF, 1,6 МБ
Все документы