Методы инструментального обследования строительных конструкций
Целью инструментального обследования зданий является получение количественных данных о состоянии несущих и ограждающих конструкций: деформациях, прочности, трещинообразовании и влажности.
Инструментальному обследованию подлежат конструкции с явно выраженными дефектами и разрушениями, обнаруженными при визуальном осмотре, либо конструкции, определяемые выборочно по условию: не менее 10% и не менее трёх штук в температурном блоке.
Методы инструментального обследования и используемая для этого аппаратура приводятся ниже в таблице.
Объемная деформация здания | Нивелирование, теодолитная съемка | Нивелиры Н-3, Н-10, НА-3 и др. Теодолиты Т-2, Т-15, ТаН и др. | |
Прогибы и перемещения | Нивелирование. Прогибомерами механического действия и жидкостными на принципе сообщающихся сосудов | Нивелиры: Н-3, Н-10, НА-1 и др. Прогибомеры механического действия ПМ-2, ПМ-3, ПАО-5. Жидкостные прогибомеры П-1 | |
Прочность бетона | Метод пластических деформаций (ГОСТ 22690.0-88). Ультразвуковой метод (ГОСТ 17624-87). Метод отрыва со скалыванием (ГОСТ 226900-88). Метод сдавливания | Молоток Физделя, молоток Кашкарова, пружинистые приборы: КМ, ПМ, ХПС и др. УКБ-2, Бетон-5, УК-14П, Бетон-12 и др. ГПНВ-5, ГПНС-4. Динамометрические клещи | |
Прочность раствора | Метод пластической деформации | Склерометр СД-2 | |
Скрытые дефекты материала конструкции | Ультразвуковой метод. Радиометрический метод | Ультразвуковые приборы: УКБ-1, УКБ-2, Бетон-12, Бетон-5, УК-14П. Радиометрические приборы: РПП-1, РПП-2, РП6С | |
Глубина трещин в бетоне и каменной кладке | Ультразвуковой метод. Радиометрический метод | Молоток, зубило, линейка. УК-10ПМ, Бетон-12, УК-14П, Бетон-5, Бетон-8УРЦ и др. | |
Ширина раскрытия трещин | Измерение стальными щупами и пр. С помощью отсчётного микроскопа | Щуп, линейка, штангенциркуль, МИР-2 | |
Толщина защитного слоя бетона | Магнитометрический метод | ИЗС-2, МИ-1, ИСМ | |
Плотность бетона, камня и сыпучих материалов | Радиометрический метод (ГОСТ 17623-87) | Источники излучения Сs-137, С0-60. Выносной элемент типа ИП-3. Счётные устройства (радиометры): Б-3, Б-4, Бетон-8-УРЦ | |
Влажность бетона и камня | Нейтронный метод | Источник излучения Ra-Be, Датчик НВ-3. Счётные устройства: СЧ-3, СЧ-4, «Бамбук» | |
Воздухопроницаемость | Пневматический метод | ДСК-3-1, ИВС-2М | |
Теплозащитные качества стенового ограждения | Электрический метод | Термощупы: ТМ, ЦЛЭМ. Теплометр ЛТИХП | |
Звукопроводность стен и перекрытий | Акустический метод | Генератор «белого» шума ГШН-1. Усилители: УМ-50, У-50. Шумомер Ш-60В. Спектометр 2112 | |
Параметры вибрации конструкции | Визуальный метод. Механический метод. Электрооптический метод | Вибромарка, Виброграф Гейгера, ручной виброграф ВР-1. Осциллографы: Н-105, Н-700, ОТ-24-51, комплект вибродатчиков | |
Осадка фундамента | Нивелирование | Нивелиры: Н-3, Н-10, НА-1 и др. |
Особое внимание при инструментальном обследовании зданий уделяют прочности материалов конструкций. Прочность бетона определяется как неразрушающими методами (ультразвук, пластическая деформация), так и с частичным разрушением тела конструкции (отрыв со скалыванием, извлечение кернов для лабораторных испытаний и пр.).
Следует подчеркнуть, что наиболее достоверную информацию о прочности бетона даёт испытание кернов. Именно этот метод рекомендуется использовать при инструментальном обследовании ответственных конструкций.
Показатели прочности арматуры устанавливают испытанием образцов, вырезанных из конструкций, в наибольшей степени поврежденных пожаром. Если отсутствуют экспериментальные данные, то величину снижения прочности бетона и арматуры определяют через понижающие коэффициенты, регламентируемые нормами проведения технического обследования здания.